1.中国中医科学院广安门医院 北京 100053
2.浙江省中医药研究院
3.北京中医药大学东直门医院
4.中国中医科学院广安门医院南区
马继征,男,博士,副主任医师
#陶夏平,男,博士,教授,主任医师,博士生导师,主要研究方向:中医药防治肝病,E-mail:taoxiaping@163.com
纸质出版日期:2023-02-28,
网络出版日期:2022-11-02,
收稿日期:2022-05-11,
移动端阅览
马继征, 朱佳杰, 宋德超, 等. 基于FXR/SHP/SREBP-1c及FXR/ApoCⅡ通路探讨健脾升清方对非酒精性脂肪性肝病大鼠脂代谢的作用[J]. 北京中医药大学学报, 2023,46(2):196-206.
MA Jizheng, ZHU Jiajie, SONG Dechao, et al.
马继征, 朱佳杰, 宋德超, 等. 基于FXR/SHP/SREBP-1c及FXR/ApoCⅡ通路探讨健脾升清方对非酒精性脂肪性肝病大鼠脂代谢的作用[J]. 北京中医药大学学报, 2023,46(2):196-206. DOI: 10.3969/j.issn.1006-2157.2023.02.010.
MA Jizheng, ZHU Jiajie, SONG Dechao, et al.
目的
2
基于法尼酯衍生物X受体(FXR)/微小异源二聚体(SHP)/固醇调节元件结合蛋白1c (SREBP-1c)及FXR/载脂蛋白CⅡ(ApoCⅡ)通路探讨健脾升清方调控非酒精性脂肪性肝病(NAFLD)模型大鼠脂代谢的分子机制。
方法
2
48只SD大鼠按随机数字表法随机分为空白组、模型组、健脾升清方高剂量组、健脾升清方中剂量组、健脾升清方低剂量组和奥贝胆酸组。除空白组正常饲养外,其余各组予高脂饲料喂养12周建立NAFLD模型。健脾升清方高、中、低剂量组分别按15.2、7.6和3.8 g/kg剂量灌胃;奥贝胆酸组按10.0 mg/kg剂量灌胃;空白组和模型组灌胃等量生理盐水。每日1次,持续4周。比较各组大鼠体质量和Lee’s指数。使用免疫酶法检测血清胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL)含量,光学显微镜下观察肝脏组织炎症、脂肪变性和气球样变并评分;免疫组织化学法及RT-PCR法分别检测肝脏FXR、SHP、SREBP-1c及ApoCⅡ蛋白及mRNA的表达。
结果
2
健脾升清方高、中、低剂量组大鼠体质量、Lee’s指数、血清TC均低于模型组(
P
<
0.05,
P
<
0.01)。健脾升清方高、中、低剂量组大鼠肝组织炎症评分低于模型组(
P
<
0.01),中、低剂量组肝组织脂肪变性评分低于模型组(
P
<
0.05,
P
<
0.01),中剂量组肝组织气球样变评分低于模型组(
P
<
0.01)。健脾升清方高剂量组、奥贝胆酸组大鼠肝组织FXR蛋白表达高于模型组(
P
<
0.05);模型组SHP及ApoCⅡ蛋白表达均低于空白组(
P
<
0.05),但各治疗组与模型组相比,差异均无统计学意义;健脾升清方中剂量组、奥贝胆酸组大鼠肝组织SREBP-1c低于模型组(
P
<
0.05,
P
<
0.01)。健脾升清方中剂量组大鼠肝组织FXR mRNA表达高于模型组(
P
<
0.05);高剂量组SHP mRNA表达高于模型组(
P
<
0.05);中剂量组、奥贝胆酸组SREBP-1c mRNA表达低于模型组(
P
<
0.01)。
结论
2
健脾升清方可能通过调控FXR/SHP/SREBP-1c脂质代谢信号通路,促进胆固醇和甘油三酯的分解,改善模型大鼠肝组织脂肪变性及其炎症损伤,从而发挥治疗NAFLD的作用。
Objective
2
We aimed to investigate the molecular mechanisms underlying the effects of
Jianpi Shengqing
Decoction (JPSQ
a compound prescription for invigorating spleen and upbearing the clear) on lipid metabolism in a rat model of non-alcoholic fatty liver disease (NAFLD). We focused on the farnesoid X receptor (FXR)/small heterodimer protein (SHP)/sterol regulatory element binding protein 1c (SREBP-1c) and FXR/apolipoprotein CⅡ (ApoCⅡ) pathways.
Methods
2
According to the random number table method
forty-eight Sprague-Dawley rats were divided into the blank group
the model group
the JPSQ high-dose group
the JPSQ medium-dose group
the JPSQ low-dose group
and the obeticholic acid group (
n
=8 rats per group). The rats in the blank group were fed normally
and the other rats were fed a high-fat diet for 12 weeks to establish the NAFLD model. The blank and model groups were given saline; the high-
medium-
and low- dose groups were administered 15.2
7.6
and 3.8 g/kg JPSQ
respectively; the obeticholic acid group was given 10.0 mg/kg
once daily for 4 weeks. Body weight and Lee’s index were recorded. The serum levels of TC
TG
LDL
and HDL were measured using immunoenzymatic assays
and the inflammation
steatosis
and ballooning degeneration of liver tissue were observed and scored under the microscope. The protein expression levels of FXR
SHP
SREBP-1c
and ApoCⅡ in liver were detected by immunohistochemistry (IHC)
and the mRNA levels were determined by RT-PCR.
Results
2
The body weight
Lee’s index
and serum TC levels were lower in the JPSQ high-
medium-
and low- dose groups than in the model group (
P
<
0.05
P
<
0.01). The inflammation scores in the JPSQ high-
medium-
and low- dose groups were lower than in the model group (
P
<
0.01). The steatosis scores in the JPSQ medium- and low- dose groups were lower than in the model group (
P
<
0.05
P
<
0.01)
and the ballooning degeneration scores in the JPSQ medium-dose group were lower than in the model group (
P
<
0.01). IHC result showed that the protein expression levels of FXR were higher in the JPSQ high-dose and obeticholic acid groups than in the model group (
P
<
0.05). Levels of SHP and ApoCⅡwere lower in the model group than that in the blank group (
P
<
0.05)
but no significant differences were seen in the JPSQ high-
medium-
low- dose and obeticholic acid groups compared with the model group. SREBP-1c levels were lower in the JPSQ medium-dose and obeticholic acid groups than in the model group (
P
<
0.05
P
<
0.01). RT-PCR result showed that the FXR mRNA levels were higher in the JPSQ medium-dose group than in the model group (
P
<
0.05). The SHP mRNA levels were higher in the JPSQ high-dose group than in the model group (
P
<
0.05). The SREBP-1c mRNA levels were lower in the JPSQ medium-dose and obeticholic acid groups than in the model group (
P
<
0.01).
Conclusion
2
Jianpi Shengqing
Decoction may play a role in the treatment of NAFLD by regulating lipid metabolism through the FXR/SHP/SREBP-1c signaling pathway. It promoted the decomposition of TC and TG
and improved the state of steatosis of liver tissue and reduced inflammatory tissue damage in model rats.
健脾升清方非酒精性脂肪性肝病脂代谢法尼酯衍生物X受体益气聪明汤平胃散大鼠
Jianpi Shengqing Decoctionnon-alcoholic fatty liver diseaselipid metabolismfarnesoid X receptorYiqi Congming DecoctionPingwei Powderrats
TSOCHATZIS EA, NEWSOME PN. Non-alcoholic fatty liver disease and the interface between primary and secondary care[J]. Lancet Gastroenterol Hepatol, 2018, 3(7): 509-517.
YOUNOSSI ZM. Non-alcoholic fatty liver disease: A global public health perspective[J]. J Hepatol, 2019, 70(3): 531-544.
WU YK, ZHENG Q, ZOU BY, et al. The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: a meta-analysis[J]. Hepatol Int, 2020,14(2):259-269.
SEEN TK, SAYED M, BILAL M, et al. Clinical indicators for progression of nonalcoholic steatohepatitis to cirrhosis[J]. World J Gastroenterol, 2021, 27(23): 3238-3248.
TARGHER G, TILG H, BYRNE CD. Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach[J]. Lancet Gastroenterol Hepatol, 2021, 6(7): 578-588.
郭小舟,陶夏平,王斌,等.从肝热脾湿论治脂肪肝[J].中西医结合肝病杂志,2020,30(1): 86-87.
白芳芳,陶夏平. 清阳不升证治探析[J]. 国际中医中药杂志,2012,34(3):252-255.
FORMAN BM, GOODE E, CHEN J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites[J]. Cell, 1995,81:687-693.
LI TG, CHIANG JYL. Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacol Rev, 2014, 66: 948-983.
WATANABE M, HOUTEN SM, WANG L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[J]. J Clin Invest, 2004, 113(10): 1408-1418.
KONG B, ZHANG M, HUANG MX, et al. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury[J]. Dig Liver Dis, 2019, 51(4): 570-576.
KAST HR, NGUYEN CM, SINAL CJ, et al. Farnesoid X-activated receptor induces apolipoprotein C-Ⅱ transcription: a molecular mechanism linking plasma triglyceride levels to bile acids[J]. Mol Endocrinol, 2001, 15(10): 1720-1728.
QIN P, BORGES-MARCUCCI LA, EVANS MJ, et al. Bile acid signaling through FXR induces intracellular adhesion molecule-1 expression in mouse liver and human hepatocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2005, 289(2): G267-G273.
DAHLHOFF C, WORSCH S, SAILER M, et al. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels[J]. Mol Metab,2014,3(5):565-580.
Non Alcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology,2005,41(6): 1313-1321.
SEOK S, SUN H, KIM YC, et al. Defective FXR-SHP Regulation in Obesity Aberrantly Increases miR-802 Expression, Promoting Insulin Resistance and Fatty Liver[J]. Diabetes, 2021, 70(3): 733-744.
EBERLé D, HEGARTY B, BOSSARD P, et al. SREBP transcription factors: master regulators of lipid homeostasis[J]. Biochimie, 2004, 86(11): 839-848.
TEODORO JS, ROLO AP, PALMEIRA CM. Hepatic FXR: key regulator of whole-body energy metabolism[J]. Trends Endocrinol Metab, 2011, 22(11): 458-466.
CHOW MD, LEE YH, GUO GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Mol Aspects Med, 2017, 56: 34-44.
MERLEN G, BIDAULT-JOURDAINNE V, KAHALE N, et al. Hepatoprotective impact of the bile acid receptor TGR5[J]. Liver Int, 2020, 40(5): 1005-1015.
MICHALOPOULOS GK. Novel insights into liver homeostasis and regeneration[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 369-370.
LIN CZ, YU BQ, CHEN LX, et al. Obeticholic Acid Induces Hepatoxicity Via FXR in the NAFLD Mice[J/OL]. Front Pharmacol, 2022,13:880508[2022-01-05]. https://www.frontiersin.org/articles/10.3389/fphar.2022.880508/fullhttps://www.frontiersin.org/articles/10.3389/fphar.2022.880508/full.
LUO MM, YAN JB, WU LY, et al. Probiotics Alleviated Nonalcoholic Fatty Liver Disease in High-Fat Diet-Fed Rats via Gut Microbiota/FXR/FGF15 Signaling Pathway[J/OL]. J Immunol Res,2021,2021:2264737[2022-01-08]. https://www.hindawi.com/journals/jir/2021/2264737/https://www.hindawi.com/journals/jir/2021/2264737/.
0
浏览量
19
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构