1.湖北中医药大学针灸骨伤学院 武汉 430060
2.湖北时珍实验室
李含章,男,在读博士生
#马骏,女,博士,教授,博士生导师,主要研究方向:针灸防治脑系疾病,E-mail:mj-1964@163.com
纸质出版日期:2024-10-30,
网络出版日期:2024-08-20,
收稿日期:2024-03-28,
移动端阅览
李含章, 李亚楠, 郭磊, 等. 电针对帕金森病小鼠肠道NEK7/NLRP3炎症信号通路的影响[J]. 北京中医药大学学报, 2024,47(10):1466-1473.
LI Hanzhang, LI Yanan, GUO Lei, et al. Effect of electroacupuncture on the NEK7/NLRP3 inflammatory signaling pathway in intestine of mice with Parkinson′s disease[J]. Journal of Beijing University of Traditional Chinese Medicine, 2024,47(10):1466-1473.
李含章, 李亚楠, 郭磊, 等. 电针对帕金森病小鼠肠道NEK7/NLRP3炎症信号通路的影响[J]. 北京中医药大学学报, 2024,47(10):1466-1473. DOI: 10.3969/j.issn.1006-2157.2024.10.017.
LI Hanzhang, LI Yanan, GUO Lei, et al. Effect of electroacupuncture on the NEK7/NLRP3 inflammatory signaling pathway in intestine of mice with Parkinson′s disease[J]. Journal of Beijing University of Traditional Chinese Medicine, 2024,47(10):1466-1473. DOI: 10.3969/j.issn.1006-2157.2024.10.017.
目的
2
观察电针对帕金森病小鼠肠道NIMA相关激酶7(NEK7)/NOD样受体热蛋白结构域相关蛋白3(NLRP3)信号通路的影响。
方法
2
36只C57BL/6小鼠按照随机数字表法分为对照组、模型组、电针组,每组12只。模型组、电针组连续灌胃鱼藤酮溶液(10 mg/kg)28 d建立帕金森病小鼠模型。造模结束后,电针组选取“风府”“太冲”“足三里”电针刺激14 d,对照组、模型组仅固定。爬杆实验、后肢评分检测小鼠运动能力,免疫组织化学法检测小鼠黑质酪氨酸羟化酶(TH)、结肠组织封闭蛋白阳性表达,苏木精-伊红染色法观察结肠组织学形态,蛋白质印迹法检测小鼠结肠组织NEK7、NLRP3、胱天蛋白酶-1(Caspase-1)及白细胞介素-1β(IL-1β)蛋白表达。
结果
2
与对照组比较,模型组小鼠爬杆实验评分降低,后肢评分升高(
P
<
0.01);黑质TH、结肠组织封闭蛋白平均光密度降低(
P
<
0.01);结肠组织可见明显炎性浸润,肌层变薄;结肠组织NEK7、NLRP3、Caspase-1、IL-1β蛋白表达升高(
P
<
0.01)。与模型组比较,电针组小鼠爬杆实验评分升高,后肢评分降低(
P
<
0.01);黑质TH、结肠封闭蛋白平均光密度升高(
P
<
0.01);结肠组织炎性浸润程度降低,肌层增厚;结肠组织NEK7、NLRP3、Caspase-1、IL-1β蛋白表达降低(
P
<
0.01)。
结论
2
电针“风府”“太冲”“足三里”可改善帕金森病小鼠的运动功能障碍,其机制可能是通过抑制肠道NEK7/NLRP3通路,改善肠屏障损伤,缓解肠道炎症,改善多巴胺能神经元损伤。
Objective
2
To investigate the effects of electroacupuncture on the intestinal NIMA-related kinase 7(NEK7)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathway in mice with Parkinson′s disease.
Methods
2
According to the randomized number table method
36 C57BL/6 mice were randomly divided into the control group
the model group
and the electroacupuncture group
with 12 mice per group. The Parkinson′s disease mouse model was established by gavage of rotenone solution (10 mg/kg) for 28 d. After molding
the electroacupuncture group was stimulated with " Fengfu" (DU17)
" Taichong" (LR3)
and " Zusanli" (ST36) for 14 d
while the control group and the model group were only treated with immobilization. The motor ability of mice was detected by pole climbing test and hindlimb rating score
the positive expressions of nigral tyrosine hydroxylase (TH) and colon occludin were detected by immunohistochemistry
the histological morphology of colon was observed by hematoxylin-eosin staining
and Western blotting was used to detect the protein expressions of NEK7
NLRP3
Caspase-1
and interleukin-1β (IL-1β).
Results
2
Compared with the control group
mice in the model group had lower score on the pole climbing test and a higher hindlimb rating score (
P
<
0.01); the average optical densities of nigral TH and colon occludin were decreased(
P
<
0.01); significant inflammatory infiltration was observed in the colonic tissue
and the muscularis propria was thinned; and the protein expressions of NEK7
NLRP3
Caspase-1
and IL-1β in the colonic tissue were elevated (
P
<
0.01). Compared with the model group
mice in the electroacupuncture group had higher score on the pole climbing test and a lower hindlimb rating score (
P
<
0.01); the average optical densities of nigral TH and colon occludin were increased (
P
<
0.01); the degree of inflammatory infiltration of colonic tissues decreased
and the muscularis propria was thickened; and the protein expressions of NEK7
NLRP3
Caspase-1
and IL-1β of
colonic tissues were decreased (
P
<
0.01).
Conclusion
2
Electroacupuncture at " Fengfu" (DU17)
" Taichong" (LR3)
and " Zusanli" (ST36) can improve motor functional impairments in mice with Parkinson′s disease
and the mechanism may be through the inhibition of intestinal NEK7/NLRP3 pathway
improving the intestinal barrier damage
relieving the intestinal inflammation
and improving the dopaminergic neuron injury.
帕金森病电针肠道炎症NIMA相关激酶7NOD样受体热蛋白结构域相关蛋白3小鼠
Parkinson′s diseaseelectroacupunctureintestinal inflammationNIMA-related kinase 7NOD-like receptor thermal protein domain associated protein 3mice
中华医学会神经病学分会帕金森病及运动障碍学组,中国医师协会神经内科医师分会帕金森病及运动障碍学组. 中国帕金森病治疗指南(第四版)[J]. 中华神经科杂志,2020, 53(12): 973-986.
DERKINDEREN P, ROUAUD T, LEBOUVIER T, et al. Parkinson disease: the enteric nervous system spills its guts[J]. Neurology, 2011, 77(19): 1761-1767.
FU PF, GAO M, YUNG KKL. Association of intestinal disorders with Parkinson′s disease and Alzheimer′s disease: a systematic review and meta-analysis[J]. ACS Chem Neurosci, 2020, 11(3): 395-405.
SCHER JU, UBEDA C, ARTACHO A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease[J]. Arthritis Rheumatol, 2015, 67(1): 128-139.
RANA SV, SHARMA S, MALIK A, et al. Small intestinal bacterial overgrowth and orocecal transit time in patients of inflammatory bowel disease[J]. Dig Dis Sci, 2013, 58(9): 2594-2598.
WEIMERS P, HALFVARSON J, SACHS MC, et al. Inflammatory bowel disease and Parkinson′s disease: a nationwide Swedish cohort study[J]. Inflamm Bowel Dis, 2019, 25(1): 111-123.
PARK S, KIM J, CHUN J, et al. Patients with inflammatory bowel disease are at an increased risk of Parkinson′s disease: a South Korean nationwide population-based study[J]. J Clin Med, 2019, 8(8): 1191.
FUSCO R, SIRACUSA R, GENOVESE T, et al. Focus on the role of NLRP3 inflammasome in diseases[J]. Int J Mol Sci, 2020, 21(12): 4223.
BROZ P, DIXIT VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407-420.
SHI JJ, GAO WQ, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
SHI HX, WANG Y, LI XH, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component[J]. Nat Immunol, 2016, 17(3): 250-258.
RATHINAM VAK, VANAJA SK, FITZGERALD KA. Regulation of inflammasome signaling[J]. Nat Immunol, 2012, 13(4): 333-342.
WEINBERG SE, SENA LA, CHANDEL NS. Mitochondria in the regulation of innate and adaptive immunity[J]. Immunity, 2015, 42(3): 406-417.
DEVOS D, LEBOUVIER T, LARDEUX B, et al. Colonic inflammation in Parkinson′s disease[J]. Neurobiol Dis, 2013, 50: 42-48.
LI Y, CHEN YY, JIANG LL, et al. Intestinal inflammation and Parkinson′s disease[J]. Aging Dis, 2021, 12(8): 2052-2068.
WEI TH, HSIEH CL. Effect of acupuncture on the p38 signaling pathway in several nervous system diseases: a systematic review[J]. Int J Mol Sci, 2020, 21(13): 4693.
LI H, HE T, XU Q, et al. Acupuncture and regulation of gastrointestinal function[J]. World J Gastroenterol, 2015, 21(27): 8304-8313.
祁羚,汪瑶,李亚楠,等. 电针对鱼藤酮诱导的帕金森病大鼠神经炎性反应及Toll样受体4/核因子-κB信号通路的影响[J]. 针刺研究,2021, 46(11): 929-934.
李含章,祁羚,张小蕾,等. 电针对帕金森病小鼠胰高血糖样肽-1受体/磷脂酰肌醇3-激酶/蛋白激酶B蛋白通路的调控作用[J]. 针刺研究,2022, 47(1): 27-32.
PEREZ-PARDO P, DODIYA HB, ENGEN PA, et al. Role of TLR4 in the gut-brain axis in Parkinson′s disease: a translational study from men to mice[J]. Gut, 2019, 68(5): 829-843.
李忠仁. 实验针灸学[M]. 2版. 北京:中国中医药出版社,2007: 255-257.
ZHANG QS, HENG Y, MOU Z, et al. Reassessment of subacute MPTP-treated mice as animal model of Parkinson′s disease[J]. Acta Pharmacol Sin, 2017, 38(10): 1317-1328.
ZHAO M, WANG BW, ZHANG CY, et al. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson′s disease[J]. Cell Death Differ, 2021, 28(8): 2517-2535.
SALVATORE MF, TERREBONNE J, CANTU MA, et al. Dissociation of striatal dopamine and tyrosine hydroxylase expression from aging-related motor decline: evidence from calorie restriction intervention[J]. J Gerontol A Biol Sci Med Sci, 2017, 73(1): 11-20.
INDEN M, KITAMURA Y, ABE M, et al. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice[J]. Biol Pharm Bull, 2011, 34(1): 92-96.
HOUSER MC, CHANG J, FACTOR SA, et al. Stool immune profiles evince gastrointestinal inflammation in Parkinson′s disease[J]. Mov Disord, 2018, 33(5): 793-804.
ROLLI-DERKINDEREN M, LECLAIR-VISONNEAU L, BOURREILLE A, et al. Is Parkinson′s disease a chronic low-grade inflammatory bowel disease[J]. J Neurol, 2020, 267(8): 2207-2213.
ROMANO S, SAVVA GM, BEDARF JR, et al. Meta-analysis of the Parkinson′s disease gut microbiome suggests alterations linked to intestinal inflammation[J]. NPJ Parkinsons Dis, 2021, 7(1): 27.
SHARIF H, WANG L, WANG WL, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J]. Nature, 2019, 570(7761): 338-343.
FU JN, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023, 41: 301-316.
WANG HN, ZHONG D, CHEN HP, et al. NLRP3 inflammasome activates interleukin-23/interleukin-17 axis during ischaemia-reperfusion injury in cerebral ischaemia in mice[J]. Life Sci, 2019, 227: 101-113.
CAO R, MA YT, LI SW, et al. 1, 25(OH)2 D3 alleviates DSS-induced ulcerative colitis via inhibiting NLRP3 inflammasome activation[J]. J Leukoc Biol, 2020, 108(1): 283-295.
DODIYA HB, FORSYTH CB, VOIGT RM, et al. Chronic stress-induced gut dysfunction exacerbates Parkinson′s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson′s disease[J]. Neurobiol Dis, 2020, 135: 104352.
SÁNCHEZ DE MEDINA F, ROMERO-CALVO I, MASCARAQUE C, et al. Intestinal inflammation and mucosal barrier function[J]. Inflamm Bowel Dis, 2014, 20(12): 2394-2404.
MORAIS LH, HARA DB, BICCA MA, et al. Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson′s disease[J]. Behav Pharmacol, 2018, 29(2/3): 199-210.
CLAIREMBAULT T, LECLAIR-VISONNEAU L, CORON E, et al. Structural alterations of the intestinal epithelial barrier in Parkinson′s disease[J]. Acta Neuropathol Commun, 2015, 3: 12.
YAN YQ, ZHENG R, LIU Y, et al. Parkin regulates microglial NLRP3 and represses neurodegeneration in Parkinson′s disease[J]. Aging Cell, 2023, 22(6): e13834.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构