1.北京中医药大学东直门医院中医内科学教育部重点实验室 北京 100700
2.北京中医药大学心血管病研究院
3.北京中医药大学东直门医院气血研究实验室
[ "专家简介:", "赵明镜,女,研究员,博士生导师,博士后合作导师。现任北京中医药大学心血管病研究院副院长,北京中医药大学东直门医院气血研究实验室主任。中西医结合学会实验医学专业委员会副主任委员,中国医师协会中西医结合学会基础与转化医学专业委员会副主任委员。长期从事中西医结合心脑血管疾病的应用基础研究,在中医药防治心力衰竭、心力衰竭后认知功能障碍、动脉粥样硬化性疾病及细胞外囊泡研究方面有丰富的研究积累。主持国家自然科学基金项目6项,北京市自然科学基金重点项目等省部级课题3项。作为主要成员获国家科技进步二等奖1项、教育部科技进步一等奖2项、中西医结合学会科技进步一等奖1项、中华中医药学会科技进步一等奖1项。发表论文160余篇,作为第一作者或通信作者发表SCI论文26篇。培养研究生及博士后30余人。" ]
纸质出版日期:2024-10-30,
网络出版日期:2024-10-08,
收稿日期:2024-06-17,
移动端阅览
赵明镜. 基于细胞外囊泡阐释中医学理论现代科学内涵和中药治疗机制[J]. 北京中医药大学学报, 2024,47(10):1333-1342.
ZHAO Mingjing. Exploration the modern scientific connotations of traditional Chinese medicine theory and therapeutic mechanism of Chinese materia medica based on extracellular vesicles[J]. Journal of Beijing University of Traditional Chinese Medicine, 2024,47(10):1333-1342.
赵明镜. 基于细胞外囊泡阐释中医学理论现代科学内涵和中药治疗机制[J]. 北京中医药大学学报, 2024,47(10):1333-1342. DOI: 10.3969/j.issn.1006-2157.2024.10.001.
ZHAO Mingjing. Exploration the modern scientific connotations of traditional Chinese medicine theory and therapeutic mechanism of Chinese materia medica based on extracellular vesicles[J]. Journal of Beijing University of Traditional Chinese Medicine, 2024,47(10):1333-1342. DOI: 10.3969/j.issn.1006-2157.2024.10.001.
细胞外囊泡由各种细胞分泌,携带母细胞来源的RNA、DNA、蛋白质和脂质等信息,介导细胞-细胞间和器官-器官间的信息交流,在疾病发生发展、诊断、治疗及药物靶向递送等领域具有重要价值,同时,也与中医学理论和中药治疗密切相关。气血津液理论和藏象学说是中医学的基本理论,细胞外囊泡属于“津液”范畴,可经血脉到达其他脏腑,干扰脏腑之间的关系,甚至造成脏腑关系失衡,从而引起疾病。中药(包括中成药和中草药)可以调节机体内源性细胞外囊泡的数量及其内容物含量以改善机体的病理状态,同时,中草药来源细胞外囊泡样颗粒是中药治疗疾病的主要药效物质形式之一。此外,细胞外囊泡还可作为载体,递送药物参与精准靶向治疗。探讨中医药与细胞外囊泡的关系可阐明中医学理论的现代科学内涵,并揭示中药发挥治疗作用的机制,发展以中药为基础的工程化细胞外囊泡将为临床治疗提供更多新策略。
Extracellular vesicles (EVs) are secreted by various cells and carry information such as parent cell-derived RNA
DNA
proteins
and lipids. They mediate information exchange between cells and organs
playing a crucial role in disease occurrence and development
diagnosis
treatment
and targeted drug delivery. EVs are also closely associated with traditional Chinese medicine theories and treatments. The qi-blood-fluid and visceral outward manifestation theories are the fundamental theories of traditional Chinese medicine. EVs belong to the fluid category and can reach other viscera through the blood vessels. They regulate the relationship between the viscera or cause imbalances between the viscera
resulting in disease. Chinese materia medica
which primarily includes traditional Chinese patent medicines and simple preparations
and Chinese herbal medicine
can help regulate the quantity and content of endogenous EVs in the body to improve pathological conditions. Additionally
EV-like particles derived from herbal medicines are a major form of pharmacologically active substances that contribute to the therapeutic effects of Chinese medicine in treating diseases. Furthermore
EVs can also be used as carriers to deliver drugs for targeted therapy. Therefore
exploring the relationship between traditional Chinese medicine and EVs will elucidate the modern scientific connotation of traditional Chinese medicine theories and reveal the mechanism of Chinese materia medica. The development of engineered EVs based on Chinese materia medica will provide novel strategies for clinical treatment.
细胞外囊泡中医学理论中药中草药来源细胞外囊泡样颗粒
extracellular vesiclestraditional Chinese medicine theoriesChinese materia medicaChinese herbal medicine-derived EV-like particles
GARCIA-MARTIN R, WANG G, BRANDÃO BB, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention[J]. Nature, 2022, 601(7893): 446-451.
THÉRY C, WITWER KW, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
WELSH JA, GOBERDHAN DCI, O’DRISCOLL L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2): e12404.
BUZAS EI. The roles of extracellular vesicles in the immune system[J]. Nat Rev Immunol, 2023, 23(4): 236-250.
WU B, LIU DA, GUAN L, et al. Stiff matrix induces exosome secretion to promote tumour growth[J]. Nat Cell Biol, 2023, 25(3): 415-424.
ZHAO Q, WANG T, WANG HB, et al. Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023 edition)[J]. Chin Herb Med, 2024, 16(1): 3-12.
SHAO H, IM H, CASTRO CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4): 1917-1950.
MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
KALLURI R, MCANDREWS KM. The role of extracellular vesicles in cancer[J]. Cell, 2023, 186(8): 1610-1626.
MORI MA, LUDWIG RG, GARCIA-MARTIN R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673.
SALOMON C, DAS S, ERDBRÜGGER U, et al. Extracellular vesicles and their emerging roles as cellular messengers in endocrinology: an endocrine society scientific statement[J]. Endocr Rev, 2022, 43(3): 441-468.
YU D, LI YX, WANG MY, et al. Exosomes as a new frontier of cancer liquid biopsy[J]. Mol Cancer, 2022, 21(1): 56.
VAN NIEL G, D’ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
ZHENG JL, ZHANG XJ, CAI WF, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-29b-3p promotes angiogenesis and ventricular remodeling in rats with myocardial infarction by targeting ADAMTS16[J]. Cardiovasc Toxicol, 2022, 22(8): 689-700.
LUO X, MENG CX, ZHANG YJ, et al. MicroRNA-21a-5p-modified macrophage exosomes as natural nanocarriers promote bone regeneration by targeting GATA2[J]. Regen Biomater, 2023, 10: rbad075.
HAN QF, LI WJ, HU KS, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer[J]. Mol Cancer, 2022, 21(1): 207.
CHEN JM, YANG J, WANG WH, et al. Tumor extracellular vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1[J]. Cell Mol Immunol, 2022, 19(11): 1290-1301.
WANG G, LI J, BOJMAR L, et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction[J]. Nature, 2023, 618(7964): 374-382.
SHAIHOV-TEPER O, RAM E, BALLAN N, et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation[J]. Circulation, 2021, 143(25): 2475-2493.
THOMOU T, MORI MA, DREYFUSS JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues[J]. Nature, 2017, 542(7642): 450-455.
WANG YD, WU LL, QI XY, et al. New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver?[J]. Genes Dis, 2023, 10(3): 799-812.
WANG J, LI L, ZHANG Z, et al. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance[J]. Cell Metab, 2022, 34(9): 1264-1279.
CHEN Y, SUN HH, BAI Y, et al. Gut dysbiosis-derived exosomes trigger hepatic steatosis by transiting HMGB1 from intestinal to liver in mice[J]. Biochem Biophys Res Commun, 2019, 509(3): 767-772.
QIU JH, XU JX, ZHANG K, et al. Refining cancer management using integrated liquid biopsy[J]. Theranostics, 2020, 10(5): 2374-2384.
SUN ZX, CHEN XH, NIU RY, et al. Liposome fusogenic enzyme-free circuit enables high-fidelity determination of single exosomal RNA[J]. Mater Today Bio, 2023, 19: 100613.
HOU J, LI X, XIE KP. Coupled liquid biopsy and bioinformatics for pancreatic cancer early detection and precision prognostication[J]. Mol Cancer, 2021, 20(1): 34.
MELO SA, LUECKE LB, KAHLERT C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182.
VYKOUKAL J, SUN N, AGUILAR-BONAVIDES C, et al. Plasma-derived extracellular vesicle proteins as a source of biomarkers for lung adenocarcinoma[J]. Oncotarget, 2017, 8(56): 95466-95480.
ZHAO R, ZHANG YL, ZHANG X, et al. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer[J]. Mol Cancer, 2018, 17(1): 68.
LI RK, WANG YH, ZHANG XX, et al. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis[J]. Mol Cancer, 2019, 18(1): 18.
KUMAR A, SU Y, SHARMA M, et al. MicroRNA expression in extracellular vesicles as a novel blood-based biomarker for Alzheimer′s disease. Alzheimers Dement. 2023 Nov;19(11):4952-4966.
JIA LF, ZHU M, KONG CJ, et al. Blood neuro-exosomal synaptic proteins predict Alzheimer′s disease at the asymptomatic stage[J]. Alzheimers Dement, 2021, 17(1): 49-60.
YAN S, JIANG C, JANZEN A, et al. Neuronally derived extracellular vesicle α-synuclein as a serum biomarker for individuals at risk of developing parkinson disease[J]. JAMA Neurol, 2024, 81(1): 59-68.
LI G, CHEN T, DAHLMAN J, et al. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases[J]. J Extracell Vesicles, 2023, 12(2): e12305.
WHITLEY JA, CAI H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing[J]. J Extracell Vesicles, 2023, 12(9): e12343.
SANCHO-ALBERO M, RUBIO-RUIZ B, PÉREZ-LÓPEZ AM, et al. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis[J]. Nat Catal, 2019, 2(10): 864-872.
KALLURI R, LEBlEU VS. The biology, function, and biomedical applications of exosomes [J]. Science,2020, 367(6478):eaau6977.
常富业,王永炎. 浅谈津络学说[J]. 北京中医药大学学报,2022, 45(1): 11-14.
姜良铎,张文生.从毒论治初探[J].北京中医药大学学报,1998, 21(5):2-3.
FANG JH, ZHANG ZJ, SHANG LR, et al. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins[J]. Hepatology, 2018, 68(4): 1459-1475.
GAO M, YU TY, LIU D, et al. Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1[J]. Clin Sci, 2021, 135(2): 347-365.
ZHANG MQ, WU Q, TANG MM, et al. Exosomal miR-3613-3p derived from oxygen-glucose deprivation-treated brain microvascular endothelial cell promotes microglial M1 polarization[J]. Cell Mol Biol Lett, 2023, 28(1): 18.
XU LL, XIE JQ, SHEN JJ, et al. Neuron-derived exosomes mediate sevoflurane-induced neurotoxicity in neonatal mice via transferring lncRNA Gas5 and promoting M1 polarization of microglia[J]. Acta Pharmacol Sin, 2024, 45(2): 298-311.
RANJAN P, KUMARI R, GOSWAMI S K, et al. Myofibroblast-derived exosome induce cardiac endothelial cell dysfunction[J]. Front Cardiovasc Med, 2021, 8: 676267.
GARCIA NA, ONTORIA-OVIEDO I, GONZÁLEZ-KING H, et al. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells[J]. PLoS One, 2015, 10(9): e0138849.
杨涛,赵明镜,王蕾,等. “心主神明”的内涵及现代科学依据[J]. 北京中医药大学学报,2016, 39(10): 811-814.
ZHANG L, BAO Y, TAO S, et al. The association between cardiovascular drugs and depression/anxiety in patients with cardiovascular disease: a meta-analysis[J]. Pharmacol Res, 2022, 175: 106024.
MAROOFI A, MORO T, AGRIMI J, et al. Cognitive decline in heart failure: Biomolecular mechanisms and benefits of exercise[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(11): 166511.
TIAN C, GAO L, RUDEBUSH TL, et al. Extracellular vesicles regulate sympatho-excitation by Nrf2 in heart failure[J]. Circ Res, 2022, 131(8): 687-700.
郭澜,李莉,葛继荣. 从外泌体探讨“肾主骨生髓”理论与骨质疏松症的关系[J]. 中国骨质疏松杂志,2020, 26(12): 1852-1856.
ZHANG D, WU YF, LI ZH, et al. MiR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1[J]. J Nanobiotechnology, 2021, 19(1): 226.
WANG LN, PAN YL, LIU MM, et al. Wen-Shen-Tong-Luo-Zhi-Tong Decoction regulates bone-fat balance in osteoporosis by adipocyte-derived exosomes[J]. Pharm Biol, 2023, 61(1): 568-580.
VAN ROOIJ E, QUIAT D, JOHNSON BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J]. Dev Cell, 2009, 17(5): 662-673.
GABISONIA K, KHAN M, RECCHIA FA. Extracellular vesicle-mediated bidirectional communication between heart and other organs[J]. Am J Physiol Heart Circ Physiol, 2022, 322(5): H769-H784.
AMINZADEH MA, ROGERS RG, FOURNIER M, et al. Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy[J]. Stem Cell Reports, 2018, 10(3): 942-955.
陈慧泽,孟胜喜. 中医药防治阿尔茨海默病研究新的切入点——外泌体[J]. 中西医结合心脑血管病杂志,2021, 19(23): 4095-4098.
YANG YJ, LI XD, CHEN GH, et al. Traditional Chinese medicine compound (Tongxinluo) and clinical outcomes of patients with acute myocardial infarction: the CTS-AMI randomized clinical trial[J]. JAMA, 2023, 330(16): 1534-1545.
XIONG YY, TANG RJ, XU JY, et al. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway[J]. Stem Cell Res Ther, 2022, 13(1): 289.
LIU YR, LI C, WU HF, et al. Paeonol attenuated inflammatory response of endothelial cells via stimulating monocytes-derived exosomal microRNA-223[J]. Front Pharmacol, 2018, 9: 1105.
SHI XY, XIE XM, SUN Y, et al. Paeonol inhibits NLRP3 mediated inflammation in rat endothelial cells by elevating hyperlipidemic rats plasma exosomal miRNA-223[J]. Eur J Pharmacol, 2020, 885: 173473.
ZANG SF, LIU T, SHI JP, et al. Curcumin: a promising agent targeting cancer stem cells[J]. Anticancer Agents Med Chem, 2014, 14(6): 787-792.
TAVERNA S, FONTANA S, MONTELEONE F, et al. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21[J]. Oncotarget, 2016, 7(21): 30420-30439.
廖世杰,罗晓林,李波香,等. 中草药与细胞外囊泡相互关系的研究[J]. 时珍国医国药,2022,33(3):684-686.
MU N, LI J, ZENG L, et al. Plant-derived exosome-like nanovesicles: current progress and prospects[J]. Int J Nanomedicine, 2023, 18: 4987-5009.
TENG Y, REN Y, SAYED M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host Microbe, 2018, 24(5): 637-652.
SUBUDHI PD, BIHARI C, SARIN SK, et al. Emerging role of edible exosomes-like nanoparticles (ELNs) as hepatoprotective agents[J]. Nanotheranostics, 2022, 6(4): 365-375.
CHEN YX, CAI Q. Plant exosome-like nanovesicles and their role in the innovative delivery of RNA therapeutics[J]. Biomedicines, 2023, 11(7): 1806.
ZHOU LK, ZHOU Z, JIANG XM, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients[J]. Cell Discov, 2020, 6(1): 54.
TENCHOV R, BIRD R, CURTZE AE, et al. Lipid Nanoparticles─From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement[J]. ACS Nano, 2021, 15(11): 16982-17015.
SHAO JT, ZARO J, SHEN YX. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate[J]. Int J Nanomedicine, 2020, 15: 9355-9371.
KOYNOVA R, TENCHOV B, MACDONALD RC. Nonlamellar phases in cationic phospholipids, relevance to drug and gene delivery[J]. ACS Biomater Sci Eng, 2015, 1(3): 130-138.
TENCHOV R, SASSO JM, WANG X, et al. Exosomes─Nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics[J]. ACS Nano, 2022, 16(11): 17802-17846.
王子妤,郑冉,马明君,等. 外泌体作为药物载体应用及其靶向给药策略[J]. 中国细胞生物学学报,2017, 39(8): 1118-1123.
CUI JW, WANG X, LI JG, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma[J]. ACS Nano, 2023,17(2): 1464-1484.
GONZÁLEZ-SARRÍAS A, IGLESIAS-AGUIRRE CE, CORTÉS-MARTÍN A, et al. Milk-derived exosomes as nanocarriers to deliver curcumin and resveratrol in breast tissue and enhance their anticancer activity[J]. Int J Mol Sci, 2022, 23(5): 2860.
AQIL F, MUNAGALA R, JEYABALAN J, et al. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin[J]. AAPS J, 2017, 19(6): 1691-1702.
OSKOUIE MN, AGHILI MOGHADDAM NS, BUTLER AE, et al. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes[J]. J Cell Physiol, 2019, 234(6): 8182-8191.
TIAN T, ZHANG HX, HE CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150: 137-149.
WANG H, SUI HJ, ZHENG Y, et al. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway[J]. Nanoscale, 2019, 11(15): 7481-7496.
ZENG J, SUN P, ZHAO YQ, et al. Bone mesenchymal stem cell-derived exosomes involved co-delivery and synergism effect with icariin via mussel-inspired multifunctional hydrogel for cartilage protection[J]. Asian J Pharm Sci, 2023, 18(3): 100799.
GIANCATERINO S, BOI C. Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up[J]. Biotechnol Adv, 2023, 63: 108092.
ZHANG L, HE FJ, GAO LN, et al. Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile[J]. Int J Nanomedicine, 2021, 16: 1575-1586.
GUO SC, TAO SC, DAWN H. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles[J]. J Extracell Vesicles, 2018, 7(1): 1508271.
HEINEMANN ML, VYKOUKAL J. Sequential filtration: a gentle method for the isolation of functional extracellular vesicles[J]. Methods Mol Biol, 2017, 1660: 33-41.
WANG ZG, MO HK, HE ZY, et al. Extracellular vesicles as an emerging drug delivery system for cancer treatment: current strategies and recent advances[J]. Biomed Pharmacother, 2022, 153: 113480.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构